
The tcpconns TCP/IP Communications Package
for JAVA

includes certificate authority

(jdk 1.5+)
(C)2007-2009 by J.H.H.C. van der Meijs

tcpconns@jhhcvandermeijs.nl

tcpconns developer’s manual

With tcpconns you can rapidly create multi-threaded
TCP/IP server applications

 This manual provides initial guidance on utilizing the
tcpconns TCP/IP communications package,

it is meant to be read from cover to cover

http://java.sun.com/
mailto:tcpconns@jhhcvandermeijs.nl
http://www.opensource.org/

tcpconns

Icons used in this manual

This icon indicates a note.

This icon indicates advice that you SHOULD follow.

This icon indicates things that you should NOT do.

This icon indicates advice that is HELPFUL.

This icon indicates (informational) resources that you might want to check out.

These icons come from the Tulliana-2.0 icon set, which can be accessed on www.kde-look.org
(http://www.kde-look.org/content/show.php?content=38757); these icons are licensed under the LGPL
license.

OpenOffice.org
This manual was written in openoffice.org, get it here.

2

http://download.openoffice.org/index.html
http://why.openoffice.org/
http://www.opensource.org/licenses/lgpl-license.php
http://www.opensource.org/licenses/lgpl-license.php
http://www.kde-look.org/content/show.php?content=38757
http://www.kde-look.org/

tcpconns

Table of Contents
About .. 4
Legal ... 7
History of Changes ... 9
Bug reports ... 12
Feature requests .. 13
Contributions .. 14
Installation .. 15

Requirements .. 15
3 Steps ... 15

Essential classes ... 17
TTCPConnection ... 17
TServerSideProtocol ... 17
TTCPServer ... 17

Non-SSL/TLS implementation .. 18
Checklist implementation (client-side) ... 18
Checklist implementation (server-side) ... 19

Communicate over the connection ... 21
Adding SSL/TLS .. 22

Unauthenticated SSL/TLS ... 22
Authenticated SSL/TLS .. 23

Presentation of an X.509 Certificate ... 23
Verification of a peer X509 Certificate with a .pem CA X509 Certificate 24

Other classes .. 25
TTempFile ... 25

Design .. 26
Listener Thread .. 26

3

tcpconns About

About
Why this package? This package prevents you from writing all essential layers necessary for robust
TCP communication over and over. Even with high-level platform-independent classes that come with
the standard java API libraries, do not underestimate the time and effort involved to produce an
extensible reusable multi-threaded TCP/IP client/server solution that is also capable of delivering
SSL/TLS. The tcpconns package has an intelligent and simple design: the tcpconns package allows you
implement multi-threaded TCP/IP client/server applications in a straightforward and easy manner. The
tcpconns package includes packages for certificate generation through a graphical user interface
application, and also certificate conversion capability. For actual certificate generation tcpconns uses
the bouncycastle.org package.

Tcpconns is Open Source Initiative approved Open Source Software. Open Source Initiative Approved
is a trademark of the Open Source Initiative. http://www.opensource.org/

Why this manual? Proper documentation and annotated code is vital to any software library or
application. Absence of adequate documentation might lead to misuse, data loss, and the mere fact that
excellent code remains unused. I am seriously lagging behind with the documentation, sorry for
that, but I simply do not have the time. This manual should get you started without difficulty
though, and if you follow the advice in this manual there should be no surprises.

NOTE: Tcpconns currently is being developed inside the Netbeans 6.5.1 IDE on Ubuntu
Linux 8.10. IT SHOULD RUN ON ANY PLATFORM THAT SUPPORTS JAVA (JDK
1.5/JRE 5 and above).

DO: Follow the instructions in this manual. This manual is meant to be read from cover to
cover.

DO: Use this manual as a reference during the implementation of your protocol.

DO: Analyze the test packages that come with the complete tcpconns .zip package and do
experiment on them. Good programming practices dictate that you must thoroughly
test new software before relying on it.

DO: Install the sun.com unlimited strength policy files. To be able to use the SSL/TLS
features in the default settings (namely TLSv1 with cipher suites
TLS_DH_anon_WITH_AES_256_CBC_SHA and TLS_RSA_WITH _AES
_256_CBC_SHA), and to be able to use the accompanying test projects, you need to have
the unlimited strength policy files installed, otherwise e.g. the following exception may

4

http://www.opensource.org/

tcpconns About

occur: “cannot support TLS_RSA_WITH_AES_256_CBC_SHA with currently installed
providers.”. The JCE unlimited strength jurisdiction policy files, together with installation
instructions, can be obtained from www.sun.com (jdk5, jdk6).

NOTE: When you are recompiling the test packages with netbeans, you might need to
reset the path to tcpconns1.jar (netbeans will automatically indicate reference problems;
“solve them” in the way netbeans indicates by browsing to the tcpconns1.jar file).

NOTE: if you make use of the PEM reading functionality (or the certificate authority
functions) then you need the bouncycastle provider jar from http://www.bouncycastle.org/
NOTE: bcprov-jdk15-xxx.jar is located in the /tcpconns/crypto-xxx/jars-folder;
alternatively get the lastest cryptopackage from bouncycastle.org at
http://www.bouncycastle.org/latest_releases.html. Either get: OR the crypto-xxx.tag.gz or
crypto-xxx.zip and unpack it, OR get the bcprov-jdkxx-xxx.jar. To add the bcprov-jdkxx-
xxx.jar to the tcpconns project (if you need to solve reference problems) or to your own
project, then please do the following (also see the installation instructions elsewhere):
right-click on the project’s name inside the netbeans ide and select “Properties” from the
PopUp menu that has appeared; in the left tree view select “Libraries” and then go to the
tab “Compile” on the right. There, remove any bcprov-jdkxx-xxx.jar files if they are
broken (if applicable); press the “Add JAR” button, browse and select your freshly
downloaded bcprov-jdkxx-xxx.jar; and then press OK down below. Now if there are
building issues, they may not be apparent immediately. If red exclamation marks appear
next to the source files, the most likely explanation is that some classes cannot be found
(“cannot find symbol”). If this is the case make sure you haven’t selected the wrong .jar
file by mistake (it happens). There should be no errors.

NOTE: If you wish to run the CertAuth program or the CertConvert program you must
start their jars by double-clicking on them (provided you have correctly installed java on
your machine and have the correct file associations in place; alternatively type the
following (or something similar if you start a different .jar) on the command line in a
terminal/dosbox: java -jar "CertAuth.jar"). The .jar is located in the /dist-folder of the
respective application. If you want to copy the program to another location, then please do
not forget to move the /lib-folder as well (!). Due to class-path definitions in netbeans you
cannot have all .jars in a single folder; double-clicking on the .jar will then raise an error
which is not entirely accurate. The error reads: "Could not find the main class. Program
will exit", while the main class indeed is defined properly. The error is raised because the
main class could not be loaded because the java virtual machine could not find the
dependency jars (which are stored in the /lib folder).

NOTE: Javadoc documentation can be easily generated from within netbeans, just right-

5

http://www.bouncycastle.org/latest_releases.html
http://www.bouncycastle.org/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://www.sun.com/

tcpconns About

click the project and select the appropriate item from the pop-up menu

NOTE: for the certificate authority’s look and feel, at least in case of reference problems,
please download the latest nimrodlf.jar-file from the nimrod website; right-click on the
project’s name; select Properties from the popup menu; select Libraries in the treeview on
the left; and under the tab Compile press the Add JAR button and add the nimrodlf.jar-file
to the project. NOTE: in the folder /tcpconns/nimrodlf a functional nimrodlf.jar file is
available. NimrodLF is distributed under the conditions of the LGPL.

LINK: SocketTest (sourceforge.net) might be helpful to you when you are implementing
your protocols. SocketTest “can be used to test any server or client that uses TCP or UDP
protocol to communicate”.

6

http://sourceforge.net/projects/sockettest
http://sockettest.sourceforge.net/
http://personales.ya.com/nimrod/faq-en.html

tcpconns Legal

Legal
THIS SOFTWARE IS RELEASED UNDER THE FOLLOWING BINDING LEGAL AGREEMENT
(BSD-LICENSE).

Copyright (C) 2007-2009
by J.H.H.C. van der Meijs (tcpconns@jhhcvandermeijs.nl)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

● Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

● Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

● Neither the name of tcpconns nor the names of its copyright holders or its contributors may be
used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU DO NOT AGREE TO THE ABOVE TERMS AND CONDITIONS THEN DO *NOT*
USE THIS SOFTWARE AND *DO* DESTROY ALL COPIES OF THIS SOFTWARE THAT
YOU HAVE.

7

mailto:tcpconns@jhhcvandermeijs.nl

tcpconns Legal

If you make changes to the code, it is appreciated that you send your modifications to
tcpconns@jhhcvandermeijs.nl so that there will be only one canonical version of the tcpconns library.

TCPCONNS’ CURRENT CODE IS NOT KNOWN TO VIOLATE ANY
COPYRIGHTS OR INFRINGE ON ANY PATENTS. MOREOVER, IT
ADHERES TO GENERAL PROGRAMMING RULES AND PRACTICES
AND IS OF SUCH A SIMPLISTIC NATURE THAT A SIMILAR PACKAGE
COULD BE CONSTRUCTED BY ANYONE.

IMPORTANT: IF YOU FEEL THAT A PIECE OF CODE IN TCPCONNS
VIOLATES A COPYRIGHT OR INFRINGES ON A PATENT, PLEASE DO
INFORM ONE OF THE AUTHORS. DO ALWAYS STATE EXACTLY
WHAT CODE IS NOT ALLOWED UNDER EXACTLY WHAT RULING,
COPYRIGHT, OR PATENT; AND PLEASE DO ELABORATE ON
EXACTLY HOW THE CODE VIOLATES THE SPECIFIC COPYRIGHT OR
INFRINGES ON THE SPECIFIC PATENT.

N.B. Tcpconns uses the jars from the www.bouncycastle.org project.
N.B. Tcpconns includes a method Utils.getJarName which contains code originally written by
"vafarmboy" (assumed to be public domain).
N.B. Tcpconns includes a method Utils.getNetworkIp which contains code originally written by
Marcello de Sales (assumed to be public domain).
N.B. FTPServer includes code from the danoFTP project (http://sourceforge.net/projects/danoftp),
which comes under a BSD license.
N.B. Tcpconns includes a class Utils.Base64 which is Copyright (c) 2004, Mikael Grev, MiG InfoCom
AB (BSD license).

Tcpconns is Open Source Initiative approved Open Source Software. Open Source Initiative Approved
is a trademark of the Open Source Initiative. http://www.opensource.org/.

8

http://www.opensource.org/
http://www.opensource.org/
mailto:tcpconns@jhhcvandermeijs.nl
http://www.opensource.org/

tcpconns History of Changes

History of Changes
● 20091004 Several updates. Some package reordering. Removed CertAuth => all certificate

authority functionality is now available in the new KeyStore Manager GUI. Regenerated
sample certs. Upgrading is recommended. Various improvements to the KeyStore Manager
GUI. Now it supports generating/verifying OpenPGP signatures with X.509 keysets. Added
functionality that allows you to import a PGP keypair, i.e. that allows you convert a
master/identity keypair into an X.509 keypair. Signatures generated with this conversion are
completely exchangeable with signatures generated by GnuPG/PGP with the full original PGP
keypair. N.B. only support for RSA keypairs. Minimal updates to documentation. Some
package reordering.

● 20090920 Created a magnificent class named KeyStoreHelper, that will allow you to read and
write pkcs#12 (.pfx/.p12), .jks, .bks, .uber, .jceks, and .pem keystores. Rewrote the CertConvert
utility. Created a second magnificent class named X509PropertiesDialog, which can be used
easily to display the properties of a X509 certificate (with or without private key, with or
without the entire X509 certificate chain); the X509PropertiesDialog allows the user to export it
(with or without private key: in .pem format) or, alternatively, to store it to disk (without private
key: in .der/.cer format, with private key: in .pfx/.p12 format); X509PropertiesDialog warns if
the X509 Certificate is outside of its validity period. Added X509CertificateSelectionDialog
and KeySelectionDialog components. Created a new KeyStoreManagerGUI component that is
much more powerful than the rewritten CertConvert utility, so I’ve decided to remove the
CertConvert utility. The new KeyStoreManagerGUI is located right in tcpconns.jar, so when
you run the tcpconns.jar, it will fire up the KeyStoreManagerGUI. And it is a GUI I love!, and
yes.....so will you!!! Have fun! ...More is to follow, stay tuned!

● 20090607 (internal build). Some reordering in the ftp project. Added new methods for SSL/TLS
in tcpconns (there are now methods that accept an SSLSocketFactory as parameter). Tested all
possible FTPServer TLS settings against the FileZilla client. Tested FTPServer on Ubuntu
Server 9.04/EXT2/SunJDK6 in a local network configuration against FileZilla.

● 20090601 (2nd beta of the Next Release). Added an XMLFileStore class that can be used to
create and read settings in an .xml file. Placed the configuration settings for FTPServer inside
an .xml file; FTPServer now has more advanced user rights management. Added a GUI
application for FTPServer. Renamed the original ftpserver project to ftp, now the GUI is named
FTPServer. Reorganized and rewrote large parts of FTPServer. The new version with GUI and
advanced user management works on the systems listed below. Documentation will follow. In
conclusion: I’m on my way,... not there yet, but I am getting there!

● 20090510 (Beta of the Next Release). Small code rewrites, some reordering, added a method
getJarName to the Utils class. Cross platform tested FTPServer locally against the latest
FileZilla releases between/on Ubuntu Desktop 9.04/EXT4/SunJDK6, PCBSD7.1
(FreeBSD7.2PRE)/UFS2/SunJDK6, and Windows Vista SP1 Home Premium/NTFS/SunJDK6.
Formal analysis of RFCs, a FTPServer GUI, and a corresponding FTPClient will all follow at a
later date. For now you are encouraged to stress test FTPServer on all platforms that support
version 1.5/5 or 1.6/6 of the java runtime environment (JRE) or java development kit (JDK);
don’t forget to install the unlimited strength policy files if you wish to use the implicit TLS
feature of FTPServer.

● 20090508 (7th Alpha of the Next Release). Rewrote and reorganized large parts of ftpserver.

9

tcpconns History of Changes

Added implicit TLS.
● 20090503 (6th Alpha of the Next Release). Added usermanagement to ftpserver.
● 20090502 (5th Alpha of the Next Release). Various improvements to ftpserver.
● 20090421 (4th Alpha of the Next Release). In ftpserver: do GetCanonicalPath when setting

userdir! (a testdrive on PCBSD7.1 revealed this small bug).
● 20090419 (3rd Alpha of the Next Release). Various small additions and small code

improvements. Added an ftpserver project that demonstrates how you could use tcpconns; I
borrowed some code from danoftp (http://sourceforge.net/projects/danoftp), which comes under
a BSD license; my intention is to develop this ftpserver project further.

● 20090405 (2nd Alpha of the Next Release) Redesigned the certificate conversion application.
Some bugfixes. SRNGSeeder was augmented with a method that automatically tries to create a
random seed file in the user directory of the current user; the method tries to obtain random
bytes from the hotbits website. Needless to say an active internet connection is necessary for
this to happen; if an active internet connection isn’t possible, it falls back on the default secure
random implementation to seed the file. Alternatively, one can create or download separately
one’s own random seed file; then place the file in the user directory with the filename
“tcpconnsSRNGSeeder.rnd”; that file will then subsequently be used. The CertAuth program
now utilizes this functionality, but you can still select any random seed file.

● 20090323 (1st Alpha of the Next Release) For reasons of clarity/legibility/comprehensibility,
I've decided to place the tcpconns classes in different subpackages.

● 20090322 Upgraded the bouncycastle jar to version 1.42
● 20080607 Application logic for CertAuth and CertConvert were updated. License notifications

now also in place. Updated the documentation.
● 20080602 Added a CertConvert program that allows you to easily convert a .pem into a .pfx

and vice versa inside a GUI interface. Also allows distillation of .cer (actually .der)-encoded
certificates from both .pem and .pfx (which can be imported into e.g. a webbrowser and be used
as a trusted certificate authority certificate to authenticate server certificates).

● 20080602 Removed the Extended Key Usage from RootCACertGenerator and CertGenerator.
This so that the generated X509 certs can be used by e.g. the apache webserver (XAMPP) and
mozilla firefox amongst others. If you are running XAMPP on linux then you should store the
generated cert as server.crt into the /opt/lampp/etc/ssl.crt-folder (root access) and the generated
rsa private key (unencrypted) as server.key into the /opt/lampp/etc/ssl.key-folder (root access).
Please make sure that the server.key-file is only readable to as root user (if the server.key file is
accessible by anyone else than root, then security is likely to be compromised if server.key is
read by the wrong party).

● 20080601 CertAuth: now certs can be generated with the private key stored unprotected
(unencrypted raw save to disk)

● 20080531 In CertAuth a java.lang.NullPointerException was raised when
SRNGSeeder.addRandom() was being called. This only occurred when executing the CertAuth
program inside M$ Window$. The problem was located in the SRNGSeeder.java file, and is
now fixed. This ‘bug’ however did not pose a serious threat to the secureness of the random
numbers generated since each time you create a new SecureRandom instance through
SRNGSeeder.newSecureRandom(), the random file is rehashed. Any certificates that were
generated on a windows machine are still secure.

● 20080120 added two classes that will enable the user to convert between .pfx (PKCS#12) and
.pem (OpenSSL) encoded certificates and vice versa. Use is quite straightforward.

10

http://www.mozilla.com/en-US/
http://www.apachefriends.org/en/xampp.html
http://sourceforge.net/projects/danoftp

tcpconns History of Changes

● 20080119 tcpconns is now included with a very very basic certificate authority that is able to
generate 4096 bit RSA certificates which can be used for most if not all purposes; thanks to
http://www.bouncycastle.org/. The certificate authority application makes use of the nimrod
look and feel (LGPL license).

● 20080119 tcpconns now includes functionality to use PEM encoded (OpenSSL) certificates;
thanks to http://www.bouncycastle.org/ (MIT X Consortium License)

11

http://www.bouncycastle.org/licence.html
http://www.bouncycastle.org/
http://www.openssl.org/
http://en.wikipedia.org/wiki/X.509
http://personales.ya.com/nimrod/licencia-en.html
http://personales.ya.com/nimrod/index-en.html
http://personales.ya.com/nimrod/index-en.html
http://www.bouncycastle.org/
http://en.wikipedia.org/wiki/RSA

tcpconns Bug reports

Bug reports
Bugs always occur, no matter how hard you try to avoid them. If you think that a bug is present in the
tcpconns library, please do notify the developer team at tcpconns@jhhcvandermeijs.nl. While bugs are
often reproducible, sometimes the circumstances in which they occurred are very hard to duplicate.

DO: check that your code is conform the instructions in this manual.

DO: make sure that the bug you discovered is not a direct consequence of code
modifications that you might have made to the tcpconns code itself.

DO: try to reproduce the exact circumstances in which the bug occurred. If at all possible,
try to write a simple program that demonstrates the bug.

DO: please include information on your system hardware, host operating system, your jdk
version, and the ide in which you develop your solution (if any).

12

mailto:tcpconns@jhhcvandermeijs.nl

tcpconns Feature requests

Feature requests
If you require some functionality and are unable, incapable, or unwilling to implement it yourself, you
may send your feature requests to tcpconns@jhhcvandermeijs.nl. On the other hand, if you have the
time, energy, and expertise, it is very much appreciated that you help implement feature requests.

13

mailto:tcpconns@jhhcvandermeijs.nl

tcpconns Contributions

Contributions
Your involvement is very much appreciated! You can contribute in many ways. You can provide art,
(re)write portions in this manual, (re)write javadoc comments, (re)write code, provide legal assistance,
test the package on different operating systems, and/or make financial donations. You don’t want to
contribute? That’s fine too, there are no obligations!

REQUEST: send your (annotated) modifications, enhancements, and/or improvements,
whether they pertain to code or documentation, to tcpconns@jhhcvandermeijs.nl so that
everyone can make full use of these modifications.

REQUEST: if you have successfully implemented a higher level protocol on top of
tcpconns then please consider donating it to the tcpconns project so that many may benefit
from your code.

For your code contributions enclose the following declaration:

“I declare, that to the best of my knowledge, my current contribution(s) to
tcpconns: do(es) not violate any copyright(s), do(es) not infringe on any
(pending) patent(s), and: do(es) not violate any non-disclosure agreement(s)
that I am a party to. I give permission that my current contribution(s): may be
rewritten and/or reordered, and: may be released as public domain software. I
understand that my contribution(s) might not ever be published as part of the
tcpconns library.”

14

mailto:tcpconns@jhhcvandermeijs.nl

tcpconns Installation

Installation

Requirements

● sun jdk 1.5 (or higher) N.B. (!): please make sure that you also install the unlimited strength
policy files if you wish to use the default settings of SSL/TLS in your project

● netbeans (highly recommended; you need the jdk 1.6 or higher to run the latest netbeans.org)

3 Steps

● install this software package in a folder of your choosing
● add the tcpconns package to your project:

○ in netbeans, right-click on your project in the project list of the project tab; select properties
from the pop-up menu; or select the project and then choose > File > “yourproject”
properties from the main menu

○ select libraries in the tree on the left

15

http://www.netbeans.org/
http://www.sun.com/

tcpconns Installation

○ go to the tab “Compile” (default)
○ press the “Add JAR/Folder” button
○ then browse to the tcpconns1.jar and select it
○ the tcpconns1.jar should now appear in the list
○ (follow the same procedure for bcprov-jdkxx-xx.jar and/or nimrodlf.jar if applicable)
○ press the “OK” button
○ (re)build your project
○ the tcpconns functionality should be importable (available) now

● start using tcpconns

16

tcpconns Essential classes

Essential classes
For instructions on how to use these essential classes, please see “Non-SSL/TLS implementation”
below.

TTCPConnection

Use this class to establish a client connection to a server.

TServerSideProtocol

This class serves as the parent class to the implementation(s) of your server side protocol(s).

TTCPServer

Implements a multi-threaded tcp server.

17

tcpconns Non-SSL/TLS implementation

Non-SSL/TLS implementation

Checklist implementation (client-side)

● create a TTCPConnection object:

TTCPConnection aTTCPConnection = new TTCPConnection();

● connect to the server:

aTTCPConnection.connect(“127.0.0.1”, 4000);

● verify connection and communicate with the server:

try {
if (aTTCPConnection.isConnected()) {

aTTCPConnection.out().writeInt(2);
aTTCPConnection.out().flush();
int a = aTTCPConnection.in().readInt();

}
} catch (Exception e) {

...
} finally {

...
}

● disconnect when done:

aTTCPConnection.disconnect();

18

tcpconns Non-SSL/TLS implementation

Checklist implementation (server-side)

● extend TServerSideProtocol:

class YourServerSideProtocol extends TServerSideProtocol {}

● write constructor with super:

public YourServerSideProtocol(
 TTCPConnection aTTCPConnection,
 TTCPServer aTTCPServer

) {
super(aTTCPConnection, aTTCPServer);

}

● override processRequest so that it contains your protocol interpreter code (allow IOExceptions
to surface beyond processRequest, i.e. if exceptions are caught, rethrow them):

@Override
public void processRequest() throws IOException {

int a = this.conn().in().readInt();
 this.conn().out().writeInt(a);
 this.conn().out().flush();

}

● extend TTCPServer:

class YourServer extends TTCPServer {}

● override newServerSideProtocol:

@Override
 synchronized public TserverSideProtocol

newServerSideProtocol(
 TTCPConnection aTTCPConnection,

 TTCPServer aTTCPServer
) throws IOException {

return new YourServerSideProtocol(aTTCPConnection,
 aTTCPServer);

}

● create an instance of your server class:

YourServer aYourServerInstance = new YourServer();

● set timeout value and maximum number of clients prn:

19

tcpconns Non-SSL/TLS implementation

aYourServerInstance.setTimeOut(10*1000);
 aYourServerInstance.setMaxClients(256);

● activate your server class (adjust firewall if necessary):

aYourServerInstance.activate(“0.0.0.0”, 4000);

● deactivate or deactivateNow when done:

aYourServerInstance.deactivate();
aYourServerInstance.deactivateNow();

20

tcpconns Communicate over the connection

Communicate over the connection
Communication is quite straightforward.
On the client side simply use the methods of TTCPConnection.in() to read from the server and
TTCPConnection.out() to write to the server. When writing to the server do not forget to call
TTCPConnection.out().flush() to force the sending of any buffered data. The original Socket is
available though TTCPConnection.mySocket().
On the server side, the TTCPConnection is available through this.conn(). Then use as you would use
TTCPConnection on the client side; however, when the client writes, the server must read and vice
versa. Also: when done writing to a client do not forget to call this.conn().out().flush() to force the
sending of any buffered data. Of course, the original Socket is available here too, if you should need it.

21

tcpconns Adding SSL/TLS

Adding SSL/TLS
For the purpose of simplicity SSL = TLS and TLS = SSL.
In SSL each party can or cannot present its credentials (in the form of X509 certificates), and each
party can or cannot verify the credentials of the other party if they are presented.

X509 Presentation X509 Verification Method to be used

Client Server Server By Client Client By Server Client Server

NO NO NOT
AVAILABLE

NOT
AVAILABLE

Make Secure
Without
Authentication

Make Secure
Without
Authentication

NO YES CLIENT
SHOULD
CHECK
SERVER
CERTIFICATE
VALIDITY AND
REVOCATION
STATUS

NOT
AVAILABLE:
ON
SERVERSIDE
CLIENT
CREDENTIALS
CANNOT BE
CHECKED

Make Secure
With Server
Cert
Authentication
by Client

[OR Make
Secure Without
Authentication]

Make Secure
With Server
Cert
Authentication
by Client

YES YES CLIENT
SHOULD
CHECK
SERVER
CERTIFICATE
VALIDITY AND
REVOCATION
STATUS

SERVER
SHOULD
CHECK CLIENT
CERTIFICATE
VALIDITY AND
REVOCATION
STATUS

Make Secure
With Client
Cert
Authentication
by Server

Make Secure
With Client
Cert
Authentication
by Server

(X509
presentation by
client is
enforced: no
X509 == no
connection)

Unauthenticated SSL/TLS

The addition of unauthenticated SSL/TLS is a breeze: on either side simply give the order
makeSecureWithoutAuthentication:

● client: aTTCPConnection.makeSecureWithoutAuthentication();
● server (TServerSideProtocol descendant):

this.conn().makeSecureWithoutAuthentication();
To stop the current SSL session without closing the connection, call makeInsecure:

● client: aTTCPConnection.makeInsecure();
● server: this.conn().makeInsecure();

Call isSecure() to verify whether you are in secure mode or not.

22

tcpconns Adding SSL/TLS

Authenticated SSL/TLS

Authenticated SSL/TLS involves the utilization of X509 certificates and keys.

Presentation of an X.509 Certificate

For public&&private key storage files (file needs to include both) do something like this:
 this.conn().makeSecureWithClientCertAuthByServer(

KeyStoreHelper.createKeyManagers(
 ((EchoServer)(this.fTTCPServer)).fKeyStoreFileName,
 ((EchoServer)(this.fTTCPServer)).fKeyStorePassphrase
)

); //client MAY present X509; server MUST present X509

fKeyStoreFileName may point to a keystore of the following types: pkcs#12 (old or new type),
openSSL’s .pem format, jceks, jks, bks, and uber.

or:

 this.conn().makeSecureWithServerCertAuthByClient(

KeyStoreHelper.createKeyManagers(
 ((EchoServer)(this.fTTCPServer)).fKeyStoreFileName,
 ((EchoServer)(this.fTTCPServer)).fKeyStorePassphrase
)

); //client MUST present X509; server MUST present X509

fKeyStoreFileName may point to a keystore of the following types: pkcs#12 (old or new type),
openSSL’s .pem format, jceks, jks, bks, and uber.

23

tcpconns Adding SSL/TLS

Verification of a peer X509 Certificate with a .pem CA X509 Certificate

After having established an SSL connection, do something similar like:

 java.security.cert.Certificate[] peerCertChain =
this.conn().getPeerCertificateChain();

 //check whether we have a peerCertChain
 if (peerCertChain == null) {this.conn().disconnect(); return;}

 //check whether the peerCertChain contains certs
 if (peerCertChain.length == 0) {this.conn().disconnect(); return;}

 //get certificate
 if (!(peerCertChain[0] instanceof X509Certificate))

 {this.conn().disconnect(); return;}
 X509Certificate anX509 = ((X509Certificate)(peerCertChain[0]));

 try {

 //check/obtain trusted CA certificate
 if (this.fTrustedCA == null) { //X509Certificate fTrustedCA
 this.fTrustedCA =

KeyStoreHelper.loadX509(this.edtCACert.getText());
//.cer/.der­formatted OR .crt/.pem­formatted

 }
 if (KeyStoreHelper.isValid(

((X509Certificate)(peerCertChain[0])),
this.fTrustedCA)

) {

 //cert is valid: check for revocation status (!!!) here

 } else {
 this.conn().disconnect();
 return;

 }
 } catch (Exception e) {
 this.conn().disconnect();
 return;

 }

24

tcpconns Other classes

Other classes

TTempFile

Use this class to obtain a temporary file handle.

25

tcpconns Design

Design

Listener Thread

Once the server is started, a dedicated, isolated, and code-safe listener thread is constantly waiting for
incoming client connections. When a client connects, the listener thread will create a separate
TServerSideProtocol object for the incoming client: objects of TServerSideProtocol contain the actual
code that serves the client. The listener thread subsequently hands every TServerSideProtocol object
over to the server’s thread pool, which will schedule it for execution. Each client thus corresponds to
one single separate TServerSideProtocol object that runs in isolation from other TServerSideProtocol
objects. Although they run separate, they must still recognize each other’s existence (prn) and work in
cooperation when accessing shared resources to prevent a total foul up.
Why is there only one listener thread running? The reason you’d want to have multiple listener threads
(probably) is to be able to allow more than one client to connect simultaneously. The java API
ServerSocket class is created with a “backlog” property, which allows it to sequester all incoming
clients who aren’t officially connected yet. These connection requests are thus kept and handled
immediately when the listener thread comes back to get the next client in line. This allows multiple
incoming connections to be handled in a proper way. Thus, theoretically, more than one listener thread
is not necessary. In practice, stress testing has indicated that if more than 512 clients simultaneously try
to connect they all will connect and all will be adequately handled within a few seconds without losing
their connection status prematurely.
If there is only one listener thread running, there is a risk that if the thread dies unexpectedly that
incoming clients will no longer be served! This is true. However, the code inside the listener thread is
safe: it is very unlikely to fail you. So the reason for listener thread termination is to be sought outside
of the listener thread itself. Possible reasons for unexpected listener thread termination are: that the
server software is not working properly, or that the java virtual machine is not working properly, or that
the host operating system is not working properly, or that the machine hardware is not working
properly. If the listener thread is to fail in such cases it is probably not the worst thing that could
happen; in fact, it is something you’d very much want to happen. If you wish, you can regularly check
whether your server is still alive. You have to implement this yourself. It is advisable that you check
your server’s availability from a machine in a different network as your server (so that it checks server
availability in general and not just local availability). If repeated polls indicate that the server has
failed, you can let it take the action that you desire (such as sending an email). The reason that this
functionality is not provided with the tcpconns package is simple: if the listener thread fails then clearly
physical intervention is necessary. Depending on a local thread to send an email might give you a false
sense of server availability, since it is very unlikely that such an action could be undertaken if the
system is unable to keep the listener thread up and running. It is (thus) recommended that you test your
server’s availability from another machine.

26

	About
	Legal
	History of Changes
	Bug reports
	Feature requests
	Contributions
	Installation
	Requirements
	3 Steps

	Essential classes
	TTCPConnection
	TServerSideProtocol
	TTCPServer

	Non-SSL/TLS implementation
	Checklist implementation (client-side)
	Checklist implementation (server-side)

	Communicate over the connection
	Adding SSL/TLS
	Unauthenticated SSL/TLS
	Authenticated SSL/TLS
	Presentation of an X.509 Certificate
	Verification of a peer X509 Certificate with a .pem CA X509 Certificate

	Other classes
	TTempFile

	Design
	Listener Thread

