
Tcpconns
Key Store Manager GUI

UUSERSER’’SS M MANUALANUAL

Table of Contents
About..3
System requirements..4

Java 1.5/5 or higher...4
Unlimited Strength Jurisdiction Policy Files...4

Legal...5
Launching the key store management application...7
Basic keystore operations...9
Certificate Authority Operations..12
Miscellaneous...19

Digests and Signatures..19

About
Welcome. Thank you for choosing tcpconns Keystore Manager application for all of your X.509
certificate needs.

With the tcpconns keystore manager you can open and save to different kinds of keystore types,
including pkcs#12 (both old and new type), jceks, java keystores, uber formatted keystores, bks
keystores, and OpenSSL’s .pem formatted keystores. With the tcpconns keystore manager you can also
act as your own certificate authority; you can generate self-signed root certificate authority keysets and
you can approve certification requests. Of course, the tcpconns keystore manager also allows you and
others to generate certification requests.

Note: the preferred type asymmetric key algorithm (for now) is RSA at a size of 4096 bits (i.e. > 128
bits symmetric equivalent); this type of key and key length value are considered to be secure for many
years to come.

Front page picture by stevendepolo March 22, 2009, Creative Commons BY license. Available at:
http://www.flickr.com/photos/stevendepolo/3378152784/sizes/o/.

http://www.flickr.com/photos/johnniewalker/359440369/sizes/l/

System requirements

Java 1.5/5 or higher

To be able to run the keystore manager application you need to have JAVA installed. Either the JRE
(version 5 or higher), or the JDK (version 1.5 or higher). The SUN JRE can be downloaded for free on
sun’s website: http://java.sun.com/javase/downloads/index.jsp. JAVA JREs (JRE = java runtime
environment) and JAVA JDKs (JDK = java development kit) are available for every major platform,
including Windows (98, XP, Vista+) , Macintosh , Linux , Solaris / OpenSolaris , and
FreeBSD / PCBSD (the latter can be found on http://www.freebsdfoundation.org/downloads/java.shtml,
http://www.pbidir.com/bt/pbi/3/java_jdk). On Ubuntu e.g., the SUN JRE/JDK is available through the
Synaptic Package Manager as well as opposed to a download from the sun website.

Unlimited Strength Jurisdiction Policy Files

To be able to use the keystore manager application, you will need to install the Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy Files , which can be downloaded from sun’s
website at http://java.sun.com/javase/downloads/index.jsp. Actract the archive/.zip-file you’ve
downloaded, and place its contents in the /lib/security (\lib\security) subfolder of the JRE folder on
your machine, accepting all overwrites. For this you probably need administrator priveliges (“sudo/su”)
on your machine.

http://java.sun.com/javase/downloads/index.jsp
http://www.pbidir.com/bt/pbi/3/java_jdk
http://www.freebsdfoundation.org/downloads/java.shtml
http://java.sun.com/javase/downloads/index.jsp

Legal
THIS SOFTWARE IS RELEASED UNDER THE FOLLOWING BINDING LEGAL AGREEMENT
(BSD-LICENSE).

Copyright (C) 2007-2009
by J.H.H.C. van der Meijs (tcpconns@jhhcvandermeijs.nl)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

● Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

● Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

● Neither the name of tcpconns nor the names of its copyright holders or its contributors may be
used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

IF YOU DO NOT AGREE TO THE ABOVE TERMS AND CONDITIONS THEN DO
NOT USE THIS SOFTWARE AND *DO* DESTROY ALL COPIES OF THIS
SOFTWARE THAT YOU HAVE.

mailto:tcpconns@jhhcvandermeijs.nl

If you make changes to the code, it is appreciated that you send your modifications to
tcpconns@jhhcvandermeijs.nl so that there will be only one canonical version of the tcpconns library.

TCPCONNS’ CURRENT CODE IS NOT KNOWN TO VIOLATE ANY COPYRIGHTS
OR INFRINGE ON ANY PATENTS. MOREOVER, IT ADHERES TO GENERAL
PROGRAMMING RULES AND PRACTICES AND IS OF SUCH A SIMPLISTIC
NATURE THAT A SIMILAR PACKAGE COULD BE CONSTRUCTED BY
ANYONE.

IMPORTANT: IF YOU FEEL THAT A PIECE OF CODE IN TCPCONNS VIOLATES
A COPYRIGHT OR INFRINGES ON A PATENT, PLEASE DO INFORM ONE OF
THE AUTHORS. DO ALWAYS STATE EXACTLY WHAT CODE IS NOT
ALLOWED UNDER EXACTLY WHAT RULING, COPYRIGHT, OR PATENT; AND
PLEASE DO ELABORATE ON EXACTLY HOW THE CODE VIOLATES THE
SPECIFIC COPYRIGHT OR INFRINGES ON THE SPECIFIC PATENT.

N.B. Tcpconns uses the jars from the www.bouncycastle.org project.

N.B. Tcpconns includes a method Utils.getJarName which contains code originally written by
"vafarmboy" (assumed to be public domain).

N.B. Tcpconns includes a method Utils.getNetworkIp which contains code originally written by
Marcello de Sales (assumed to be public domain).

N.B. FTPServer includes code from the danoFTP project (http://sourceforge.net/projects/danoftp),
which comes under a BSD license.

N.B. Tcpconns includes a class Utils.Base64 which is Copyright (c) 2004, Mikael Grev, MiG InfoCom
AB (BSD license).

Tcpconns is Open Source Initiative approved Open Source Software. Open Source Initiative Approved
is a trademark of the Open Source Initiative. http://www.opensource.org/.

http://www.opensource.org/
http://www.opensource.org/
mailto:tcpconns@jhhcvandermeijs.nl
http://www.opensource.org/

Launching the key store management application
The key store manager GUI is started like any other java application. Locate the tcpconns.jar.
Depending on your platform and your user settings, do one of the following:

• double click on the tcpconns.jar. This will either start the program or will open an archive
manager tool (since a .jar is like a .zip). Altenatively right-click the tcpconns.jar and select
“open with java”.

• open a terminal/dosbox and browse to the folder that contains tcpconns.jar. Then type “java -jar
tcpconns.jar” and hit the [ENTER] button on your keyboard. This should start the program.

• create a link that does the same as the option directly above this one.

Once the KeyStore Manager GUI is running, it will display a window that looks like:

Basic keystore operations

1. New keystore: this will clear all contents from the keystore that is in memory. This will not
affect any keystores on disk. N.B. to make changes permanent you will have to “Save As...”
after you’ve performed the desired operations.

2. Open keystore: this will present an open dialog (browse to the desired keystore and approve it
by selecting it and by pressing the open button) which is followed by a “enter passphrase”
dialog. The keystore manager application is able to open keystores of the following types:
pkcs#12 (both old and new type), java key stores, jceks, bks, uber type, and openSSL’s .pem
type keystores. The keystore manager application can save keystores in these formats too.

a. once a keystore has opened successfully, a list is displayed in the tree on the left. This
includes all available X.509 entities with or without private keys.

b. selecting an item (e.g. by left-clicking on the item) will allow inspection of the X.509 entity;
the properties of which will be displayed in the tree on the right.

c. opening a context menu on an item (e.g. by right-clicking on the item) will allow you to
perform some additional operations:

i. export: this allows you to export the X.509 entity, with or without private key, in
various formats.

ii. delete: this removes the X.509 entity from the keystore that is in memory. This will not
affect any keystores on disk. N.B. to make changes permanent you will have to “Save
As...” after you’ve performed the desired operations.

iii. private key

1. export private key: allows you to store the private key to disk (.pem formatted)

2. import private key: allows you to import a private key from disk (.pem formatted).
This functionality is helpful if you have received your X.509 certificate from a
certificate authority, and you are joining the private key with the X.509, so that you
can store the combination e.g. as a pkcs#12 file or a .pem file. N.B. when you
generate a certificate request with the keystore manager application, you must store
both the request (.request) and key (.key) to disk. Once you have delivered your
request to a certificate authority, the certificate authority can either approve the
request by signing it (i.e. generating a X.509 certificate for you), or decline the
request. Once approved, you will obtain an X.509 certificate from the certificate
authority.

3. detach private key: the combination of export private key and remove private key

4. remove private key: this allows you to remove a private key from an X.509 entity
in the in memory keystore. This will not affect any keystores on disk. N.B. to make
changes permanent you will have to “Save As...” after you’ve performed the desired
operations. P.S. please make sure that you have a copy of the private key left, stored
somewhere safe; if this is your only copy of the private key, then it is needless to say

that you cannot use the private key any more once you remove it, and have
overwritten the original keystore that contained the private key.

3. Save As... will allow you to save the in memory keystore to various types to disk. The keystore
manager application is able to save keystores of the following types: pkcs#12 (both old and new
type), java key stores, jceks, bks, uber type, and openSSL’s .pem type keystores. Saving to old
type pkcs#12 keystores is not recommended (sometimes it takes ages, the result cannot be used
by some browsers/applications, and it is less secure than the new version of pkcs#12). N.B.
private keys, even when stored with serious encryption methods still need appropriate handling
and need not be made public.

4. Quit: quits the keystrore manager application.

5. Edit:

a. Import Keystore: allows you to add the contents of another keystore to this keystore. This
will not affect any keystores on disk. N.B. to make changes permanent you will have to
“Save As...” after you’ve performed the desired operations.

b. Import Certificate: allows you to add a single X.509 certificate entity to the keystore
(either .cer/.der-formatted or .crt/.pem-formatted). This will not affect any keystores on
disk. N.B. to make changes permanent you will have to “Save As...” after you’ve performed
the desired operations.

c. Refresh: reiterates through the list of X.509 entities and reconstructs the tree on the left.

Certificate Authority Operations

1. New Certification Request. Leave the settings for key algorithm, key size, and signature
algorithm untouched, unless you know what you are doing (current settings are safe and
interoperable/portable between different types of applications). Fill in all that is known. If you
have a PGP keypair that you wish to reuse, then the “load PGP keypair” button allows you to
import the PGP master keypair. Pressing reset will reset the dialog. Pressing Generate will lead
to the generation of a new certification request.

After a certification request is generated, please DO store the request (.request) and private key
(.key) to disk before doing anything else.

2. New Self-signed Root CA Certificate. Similar to the “New Certification Request”-Dialog,
except that now you can enter a validity period.

3. Set Certificate Authority. Allows you to select a certificate authority, which you then can use
to approve certification requests. You will be presented with an open keystore dialog, a
passphrase dialog, and subsequently with a “please select the appropriate key”-dialog.

After selecting the desired Certificate Authority Keypair press the OK-button. A message
dialog will confirm selection of the CA entity. N.B. in tcpconns’ keymanager application
constraints set by others are ignored. Any X.509 entity with private key can act as a CA.
Certificates generated and certification requests approved with the keymanager application will
all be official certificate authorities with unlimited path lengths.

4. Inspect Certificate Authority. Once a certificate authority is set, you can inspect the certificate
at any time.

5. Clear Certificate Authority. Makes the keymanager application stop acting as a CA.

6. Sign Certification Request.

First, press the load request-button. This checks the integrity of the request and fills in the form.

The “load PGP public key”-button serves only one purpose: to extract the validity period from
the given pgp public key. Note: nothing else is taken from the PGP public key pair. When
should you need this functionality? When you’ve used a PGP keypair to construct a certification
request, and you wish that the X.509 will generate the same KeyID as your original PGP
keypair. This is necessary for creating and verifying OpenPGP signatures made with X.509
entities: in this way GNUPG and PGP will recognize signatures made by your newly generated
X.509 keypair.

Once you have verified all data and found it to be correct (be very meticulous about this), then
hit the approve (sign)-button. N.B. You should only sign certification requests of which you
know the origin and know for certain that the identity information supplied with the
request belongs to the person requesting the certificate to be signed.

7. Create New Certificate. Allows you to create a new certificate with the set CA as signing
party. Under the hood a certification request is generated and approved.

Miscellaneous

Digests and Signatures

1. Calculate message digest. This will open a dialog in which you can select a file or type a text,
and the generate various message digests with it. They are placed in the text area. If it is a large
file, then it may take some time, and the dialog may be unresponsive.

2. Create OpenPGP Detached Signature. First opens a dialog in which you can select a X.509
entity that has a private key attached. Prior to this you must have opened a keystore! Then an
open dialog will appear: select the file for which you wish to create a signature. Then a save
dialog will appear: enter the file to which the signature must be saved. Signatures are saved in
ASCII format.

3. Verify OpenPGP Detached Signature. An open dialog is presented in which you must choose
the file from which you wish to verify a signature. Another open dialog is presented, please
select the signature file. The keystore manager application will search among the X.509 entities
in the keystore that is in memory (i.e. the keystore that you opened before starting the
verification process), and if the signing key is present, it will verify the signature. The public
key of the signing keypair must be present to be able to verify the signature. For now it only
verifies that the Message Digest the signature contains is signed by the signing keypair and that
it corresponds to the Message Digest that was regenerated for the specific file.

	About
	System requirements
	Java 1.5/5 or higher
	Unlimited Strength Jurisdiction Policy Files

	Legal
	Launching the key store management application
	Basic keystore operations
	Certificate Authority Operations
	Miscellaneous
	Digests and Signatures

